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Abstract In the framework of the theory of phase transfor-

mations with position-dependent nucleation rate, a model has

been developed aimed at describing the dissolution-precipita-

tion reaction at the surface of small particles. The precipitation

reaction takes place by nucleation and growth processes under

time-dependent supersaturation. Depending on the coverage of

the particle surface by the new phase, the reaction kinetics

exhibits high- and low-rate regimes. The computation is per-

formed for both progressive and simultaneous nucleation. In

the case of simultaneous nucleation, closed-form solutions are

attained for diffusion- and interface-limited growth modes and

for isotropic and anisotropic growths of the nuclei, as well. The

scaling properties of the kinetics on particle size are also

investigated. The kinetic model is employed for analysing

experimental data and makes it possible to estimate the

nucleation density on the particle surface and to have an insight

into the microscopic growth law of nuclei.

Introduction

Phase transformations in the solid state are of considerable

importance in Materials Science since these phenomena

usually occur during the production cycle of materials and

affect the microstructure of the final product [1]. With the

advent of the nanotechnology, phase transitions, taking

place at the surface of small particles, have been attracting

considerable interest from both theoretical and experi-

mental points of view. Several studies have been done

dealing with phase transitions in one-component systems,

which can be schematized as the occurrence of a single

reaction. Significant advancements on the modelling of the

process have been achieved, which include, among others,

the study of the effect on the kinetics of the nucleation rate,

of the anisotropic grain growth where the shielding effect

comes into play and of the non-random distribution of

nuclei as well [2–9]. Numerical and analytical methods

have also been developed aimed at describing the particle

size distribution function in nucleation and crystallization

processes [10–12]. The situation is more involved in the

case of transformations taking place in multicomponent

systems, owing to the coupling between the mass transport

of the various components, as well as to the possible

occurrence of multiple reactions [13–15]. A complex

reaction that falls within this category is the dissolution-

precipitation reaction, which entails, at least, two kinetic

processes one of the two, the precipitation, leads to the

formation of a new solid phase. An important system that

undergoes this type of transformation is the tricalcium

silicate (Ca3SiO5 i.e. C3S) when reacting with water. It is a

well-established fact that C3S hydration proceeds via the

dissolution of tricalcium silicate and the precipitation of the

CaOx–SiO2–H2O (i.e. CSH) phase [16]. The formation of

CSH has been shown to occur by heterogeneous nucleation

and growth, which depend upon the lime concentration.

Since the nucleation stage is much shorter than the duration

of the hydration process, the nucleation can be assumed to

be simultaneous, a fact that simplifies the modelling of the

kinetics and makes it possible to attain solutions in closed

form.

The present contribution is aimed at modelling, analyt-

ically, the dissolution-precipitation reaction taking place on

the surface of small particles and to discuss an application

to the study of a real system. In this context, experimental
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data available from the literature are employed as a ‘‘test

bench’’ of the approach here developed. The kinetics of

precipitation is described in the framework of the theory of

phase transitions—ruled by nucleation and growth—in

inhomogeneous systems. Besides, the dissolution reaction

is coupled with the precipitation process through the rate

equation for the supersaturation of the parent phase.

The model kinetics outlined here provides physical

insights into the scaling properties of the volume of the

new phase, on both particle radius and rate coefficients for

the nucleus growth, either for diffusion- or interface-lim-

ited growths and isotropic or anisotropic nuclei as well.

The supersaturation of the parent phase and the fractional

coverage of the particle surface enter the rate equations,

explicitly, and permit us to highlight the role of these

quantities on the kinetics of the whole process. In addition,

keeping the mathematical complexity of the problem

manageable, the analytical results can be useful for ana-

lysing experimental kinetics in order to estimate the

nucleation density at the particle surface, the growth law

and the aspect ratio of the nuclei.

The article is divided as follows. In Sect. 2.1, the kinetic

model for the precipitation reaction is presented for the

general cases of progressive and simultaneous nucleation,

as well as for isotropic and anisotropic growths of the

nuclei. Section 2.2 is devoted to the kinetics of dissolution-

precipitation and to the analysis of experimental data on

CSH formation during C3S hydration.

Results and discussion

The model

The model is based on the theory of nucleation and growth

for position-dependent nucleation rate developed in refs.

[17–20]. In particular, the nucleation and growth processes,

which are subsequent to the dissolution event, are assumed

to take place on the surface of a spherical particle. The

radius of the particle is considered to be greater than the

mean radius of the nuclei.

In the following, the theory is developed for both con-

tinuous (i.e. constant nucleation rate) and simultaneous

nucleation processes and in the case of nuclei randomly

distributed on the particle surface.

Continuous nucleation and isotropic growth

In the case of continuous nucleation, the nucleation rate on

the particle surface is taken to be constant, i.e., dN
dt ¼ I0

where N is the surface density of nuclei. Moreover,

according to Ref. [20] in the case of isotropic nucleus

growth, the growth rate, t, is taken as constant. With

reference to Fig. 1, in what it follows R designates the

particle radius, R1 ¼ tðt � t0Þ is the nucleus radius at run-

ning time t, where t0\ t is the birth time of the nucleus and

R0 is the distance of the generic point P from the particle

centre. The probability the generic point is untransformed

up to time t is given by the expression

PðR0; tÞ ¼ e�neðR0;tÞ; ð1Þ

where ne, a function of R0, is the so-called extended vol-

ume [21, 22] whose functional form will be derived below.

Since the nucleation occurs on the particle surface, the

nuclei that start growing at time t0 capable of transforming

the generic point P up to t are those who lie on the particle

surface contained within the ‘‘sphere of influence’’ of the

point P, namely the sphere of radius R1ðt � t0Þ ¼ tðt � t0Þ
centred at P (see also Fig. 1). Since the area of this region

is given by Aðt; t0Þ ¼ p R
R0

R2
1ðt � t0Þ � ðR0 � RÞ2

h i
, the

extended surface reads

neðR0; tÞ

¼ I0p
Rt� R�R0j j

t

0

R
R0

R2
1ðt� t0Þ�ðR0�RÞ2

h i
dt0 R�R0j j\tt

0 R�R0j j[tt ,

8>><
>>:

ð2Þ

where I0 is the nucleation rate per unitary surface. For the

sake of simplicity, the dependence on particle radius has

Fig. 1 Representation of the spherical particle, of radius R and of the

generic points P and P0 above and below the particle surface,

respectively. R1 is the radius of the spherical nucleus nucleated at the

particle surface at time t0—at running time t. The sphere of radius R1

centred at P is the ‘‘sphere of influence’’ of this point. The point P is

uncovered by the new phase (i.e. untransformed) provided that no

nucleation event occurs (at time t0) on the surface of the particle

contained within the ‘‘sphere of influence’’, that is, the spherical cup

AB. A nucleus centred at Q on the particle surface is also depicted
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been omitted in the argument of the ne function. It is worth

stressing that this equation holds for transformations

involving both the internal (R [ R0) and the external

portion of the particle. However, with the aim of modelling

the precipitation of the new phase from the supersaturated

phase, in Eq. 1, the condition R [ R0 will be considered,

only. For the linear growth law, the integral can be solved

leading to the expression

neðf; tÞ ¼ I0pt2t3 g
f

2

3
ðf� gÞ3 þ 1

3
� ðf� gÞ2

� �

�H½1� ðf� gÞ�;
ð3Þ

where g � gðtÞ ¼ R
tt, f � fðtÞ ¼ R0

tt , HðxÞ is the Heavyside

function (HðxÞ ¼ 1 for x [ 0; HðxÞ ¼ 0 for x\0)

and f[ g. The fraction of untransformed phase is

therefore attained by averaging Eq. 1 over the region

bounded by the spheres of radii R and ðRþ ttÞ:

PðtÞh i ¼ 1

4p
3
ðRþ ttÞ3 � R3
h i 4p

ZRþtt

R

R2
0e�neðR0;tÞdR0

¼ 3

ðgþ 1Þ3 � g3
h i

Z1þg

g

f2e�neðf;tÞdf: ð4Þ

From Eq. 4, the volume of the transformed phase is

computed as

VðtÞ ¼ 4

3
p ðRþ ttÞ3 � R3
h i

1� PðtÞh ið Þ: ð5Þ

Moreover, by inserting Eq. 3 in Eq. 4, one obtains

PðtÞh i ¼ 3

ð1þ gÞ3 � g3

h i
Z1

0

ðzþ gÞ2e�
Kt3

3
g

zþg 1�3z2þ2z3½ �dz;

ð6Þ

where z ¼ f� g and K ¼ pI0t2.

It is enlightening to compare Eq. 5 with the solution

previously attained by Cahn [23] for nucleated reactions at

grain boundaries. This solution, in turn, has also been

employed in refs. [24, 25] for modelling dissolution-pre-

cipitation processes. In fact, in the limit of planar surface

g!1, and Eqs. 5–6 give

VðtÞ ¼ Att 1�
Z1

0

e�
Kt3

3
ð1�3z2þ2z3Þdz

0
@

1
A; ð7Þ

where A is the area of the surface. On the basis of the

argument presented in Ref. [23], in order to deal with an

assembly containing a large number of grain boundaries,

the volume given by Eq. 5 is considered as the extended

volume due to the growth on a single plane. In fact, Eq. 7

gives the contribution of an isolated plane where

interference (impingement) between different planes is

not allowed. By denoting with V0 the total volume of the

system and with N the total number of planes (grain

boundaries), the fraction NV/V0 plays the role of an

extended volume fraction, for multiple overlaps between

transformed regions on different planes are now permitted.

This extended volume can be related to the volume fraction

of the transformed phase, provided that the planes are

randomly distributed throughout V0. A straightforward

application of Eq. 1 eventually gives

VT ¼ 1� e
�2NV

V0 ¼ 1� e
�2qBtt 1�

R1
0

e
�Kt3

3
ð1�3z2þ2z3Þ

dz

� �

; ð8Þ

which coincides with the solution of Ref. [23], where qB ¼
NA=V0 is the boundary area per unitary volume. Since the

transformation at a grain boundary usually takes place on

both sides of the plane, a factor of two has been included in

Eq. 8.

As far as the validity of Eq. 8 is concerned, it should be

borne in mind that this equation is an approximation. In

fact, the statistical argument employed in its derivation and

discussed above is not rigorous. The reason for this relies

on the so-called blocking effect, which is active whenever

the nucleus growth is anisotropic and both distribution and

orientation of the nuclei are random [4–7]. Under these

circumstances, the Kolmogorov–Johnson–Mehl–Avrami

(KJMA) theory [21, 26–29] does not hold. It turns out that,

on statistical ground, Eq. 8 is an application of the KJMA

theory to phase transitions ruled by simultaneous nucle-

ation and anisotropic growth, where the new phase,

nucleated on a single plane, plays the role of the ‘‘aniso-

tropic nucleus’’ (randomly oriented).

Simultaneous nucleation

In the case of simultaneous nucleation, all nuclei start

growing at the same time, and the nucleation rate per

unitary surface is given by dN
dt ¼ N0dðtÞ, where N0 is the

number density of nuclei and dðtÞ is Dirac’s delta function.

It is worth pointing out that, under these circumstances, the

kinetic model can be developed, analytically, for a generic

growth law, R1 � R1ðtÞ. The extended volume fraction

reads

neðR0; tÞ¼N0p
R

R0

R1ðtÞ2�ðR0�RÞ2
h i

H R1ðtÞ�ðR0�RÞ½ �;

ð9Þ

with R0 [ R. Following the computation pathway of the

previous section, the mean value of the untransformed

fraction (Eq. 6) is given by
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PðtÞh i ¼ 3

ð1þ gÞ3 � g3
h i

Z1

0

ðzþ gÞ2e�pN0R1ðtÞ2 g
zþg 1�z2½ �dz;

ð10Þ

with g � gðtÞ ¼ R
R1ðtÞ, f � fðtÞ ¼ R0

R1ðtÞ and z ¼ f� g.

The volume of the new phase is computed using Eq. 5

as

VðtÞ¼ 4p
3

R1ðtÞ3

� ðgþ1Þ3�g3�3

Z1

0

ðgþ zÞ2e�pN0R1ðtÞ2 g
zþgð1�z2Þdz

2
4

3
5;

ð11Þ

where feðz; tÞ ¼ pN0R1ðtÞ2 g
zþg ð1� z2Þ. In the early stage

of the growth, N0R2
1ðtÞ � 1 and a series expansion of the

exponential function entering Eq. 11 provides V ffi 4pR3
1

3
M0

2
,

where M0 ¼ 4pR2N0 is the total number of nuclei. This is

the expected result in the case of non-overlapping nuclei.

With the aim of modelling the dissolution-precipitation

reaction, it is convenient to express the kinetics in terms of

the fraction of the particle surface that is covered by the

precipitate, S. Since an isolated nucleus of radius R1(t)

covers a portion of the particle surface of area a ¼ pR2
1, the

transformed surface fraction is

SðtÞ ¼ 1� e�yðtÞ; ð12Þ

where y ¼ pN0R2
1 is the extended surface. The extended

volume of Eq. 11 can eventually be expressed in terms of

the quantity S as follows

neðz; SÞ ¼
M0

4

ð1� z2Þ
ðzþ gÞg ; ð13aÞ

where

gðS;M0Þ ¼
1

2

M0

� lnð1� SÞ

� �1=2

ð13bÞ

and M0 is the total number of nucleation centres on the

particle surface. Besides, the volume of the precipitate can

be recast in the form

VðyÞ ¼ 4p
3

R1ðyÞ3
"

1þ 3
M0

4y

� �1=2

þ3
M0

4y

� �

� 3
M0

4y

� �Z1

0

1þ z

g

� �2

e�
yg

gþzð1�z2Þdz

#
:

ð13cÞ

In the limit R � R1 (that is g� 1 or M0 � y), the integral

in Eq. 13c is independent of M0 and the transformed

volume becomes

VðyÞ ¼ M0

N
3=2
0

GðyÞ ð14Þ

where GðyÞ ¼
ffiffiffiffiffiffiffiffi
y=p

p
½1� IðyÞ� and IðyÞ ¼

R 1

0
e�yð1�z2Þdz.

In view of the application of the kinetics to describe

experimental data (Sect. 2.2), before concluding this sec-

tion, we will briefly discuss the case of anisotropic nucleus

growth. Under these circumstances, a simple approach has

been developed by assuming the growth rates, normal and

tangential to the particle surface, to be different to each

other. It is worth pointing out that, since nucleation takes

place on the particle surface, in this case, the aforemen-

tioned blocking effect is not present. The extended surface

(Eq. 9) is

neðR0; tÞ ¼ 2pN0R2 1� cos
‘==ðtÞ

R

� �
H½‘?ðtÞ � ðR0 � RÞ�;

ð15aÞ

where ‘==ðtÞ and ‘?ðtÞ are, respectively, the growth laws

tangential and normal to the particle surface and R0 [ R.

The probability hP(t)i is now given by

PðtÞh i ¼ 3

ð1þ kÞ3 � k3
h i e�2pN0R2 1�cos

‘==
R

� � Z1

0

ðzþ kÞ2dz

¼ e�2pN0R2 1�cos
‘==
R

� �
;

ð15bÞ

where k ¼ R
‘?

and z ¼ ðR0 � RÞ=‘?. It is noteworthy that in

this case, the fraction of the particle surface covered by

nuclei is equal to S(t) = 1 - hP(t)i. The computation of

the transformed volume is performed by exploiting the

same approximation that led to Eq. 14, namely the particle

size is thought to be greater than the nucleus size. By

Taylor expanding the trigonometric function in Eq. 15b,

one ends up with

VðtÞ ¼ 4p
3
‘3
?ðtÞ ð1þ kÞ3 � k3

n o
1� e

�pN0‘
2
==
ðtÞ

	 

: ð16Þ

By defining y ¼ pN0‘
2
==ðtÞ and retaining in the first bracket

the leading term in k, one obtains

VðyÞ ¼ aM0

N
3=2
0

~GðyÞ; ð17Þ

where a ¼ ‘?
‘==

is the aspect ratio of the nucleus and

~GðyÞ ¼
ffiffiffiffiffiffiffiffi
y=p

p
½1� e�y�. It is worth emphasizing the simi-

larity between Eqs. 17 and 14, which only differ in the

definition of the I(y) function.

The trends of G(y) ~GðyÞ are displayed in Fig. 2. For

nucleus size which scales as R1 	
ffiffi
t
p

(i.e. y 	 t), the G

function mimics the kinetics of the transformed volume on
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a single particle. Similar consideration holds for ~G, pro-

vided that the aspect ratio is constant. The trends of the

derivatives of G(y) and ~GðyÞ underline the presence of

high-rate and low-rate regimes, where the transition- to the

low-rate regime occurs once the fractional coverage of the

particle surface is nearly one.

Although the simultaneous nucleation has to be con-

sidered a model case, it allows us to deal with any growth

law and, moreover, to obtain an analytical solution suitable

for treating experimental data. In fact, the present approach

is suitable for studying the CSH growth on C3S grains

where the nucleation process has been shown to be nearly

simultaneous [30]. Besides, in the early stage of the reac-

tion, the effect of the particle radius reduction, owing to the

dissolution process, can be faced by properly re-scaling the

nucleation rate as dN
dt ! dN

dt
Rð0Þ
RðtÞ

h i2

, where R(t) is the particle

radius at running time t. In the case of simultaneous

nucleation, the re-scaling simply applies to the nucleation

density.

Rate equation for the dissolution-precipitation reaction

This section is devoted to describe the formation, via a

dissolution-precipitation process, of a new phase (denoted

in this section as the a phase) on a small particle (denoted

as the p phase). In view of the application discussed in the

last section, the parent phase is considered to be a liquid

phase (denoted as the b phase) and the supersaturation

(undersaturation) of a single species is assumed to rule the

reaction.

The kinetics of the transformed volume (Eqs. 5, 11) has

to be coupled with the kinetics of growth of the nuclei,

which, in turn, is expected to be an involved function of the

transformed volume. In fact, such a close coupling between

nucleus growth law and phase transition kinetics is due to

the fact that the dissolution process depends upon the

fraction of the particle surface covered by the precipitate,

S. Accordingly, the changing rate of the supersaturation of

the parent phase is due to both ‘‘interface-controlled’’ and

‘‘diffusion-limited’’ (within the precipitate) reactions of p
and b phases. The first contribution is proportional to

(1 - S), while the second, being ruled by Fick’s law, is

proportional to the ratio S=�h, where �h ¼ V
4pR2S

is the mean

thickness of the precipitate. In the following, to simplify

the complexity of the mathematical computation, we

thought the growth as ruled by the supersaturation of one

component, referred to as the active species. Accordingly,

for isotropic growth of the nuclei, the rate equations for the

dissolution and the growth of the a phase read,

dn

dt

� �

diss

¼ 4pR2 k1

S
�h
þ k2ð1� SÞ

� �
ð18aÞ

dn

dt

� �

prec

¼ ca
dV

dt
¼ ca

M0

N
3=2
0

dG

dt
; ð18bÞ

where n is the number of active species in the parent phase,

ca is the concentration of active species in the precipitate

and the kis are the rate coefficients. It is useful to switch

from the n variable to the supersaturation of the active

species in the parent phase (with respect to the a phase) that

is defined as [31, 32] r � rb;a ¼ c�cb

ca�cb
, with cb being the

concentration of the active species in the solution in

equilibrium with the precipitate. Since the rate equation for

the supersaturation in a system of constant volume, say t0,

is dr
dt ¼ 1

ðca�cbÞt0

dn
dt , Eqs. 18a,b lead to the balance equation,

dr
dt
¼ 1

Dct0

dn

dt

� �

diss

� dn

dt

� �

prec

" #

¼ �k2 S ~k1

S

G
� 1

� �
þ 1

� �
� k3

dG

dt
;

ð19Þ

where �k2 ¼ 4pR2k2

Dct0
, ~k1 ¼ k1

k2
N

1=2
0 , k3 ¼ caM0

DcN
3=2

0
t

0

and the short

notation Dc ¼ ca � cb was used. In the following, the

reasonable assumption is made according to which

ca � cb, i.e., Dc ffi ca. The rate constants for dissolution

are proportional to the supersaturation of the p phase with

respect to the b phase, namely r � rp;b ¼
c0b�c

c0b�cp
, where c0b is

the concentration of the species in the solution in

equilibrium with the phase p. In fact, the b phase is

supersaturated (undersaturated) with respect to the a (p)

phase. It turns out that for c0b � c, the rate coefficients for

dissolution are independent of c. Eqs. 18, 19 also apply to

the case of anisotropic nucleus growth by substituting G

Fig. 2 Behaviour of the G(y) (curve a) and ~GðyÞ (curve b) functions

for the isotropic and anisotropic growth modes, respectively. The

derivatives of these functions are also displayed as dashed lines (right
scale). The surface coverage is shown as dashed-dotted line (left
scale), and the y value at the transition point, yTR, has been marked on

the abscissa

808 J Mater Sci (2012) 47:804–814
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with a ~G, that is, using Eq. 17 in place of Eq. 14. Moreover,

Eq. 19 can be rewritten in terms of the variable y ¼ pN0R2
1,

provided that the growth law is known. For instance, in the

case of diffusion-limited growth [33] dR1

dt ¼ D r
R1

and

dy
dt ¼ 2pN0Dr, D being the diffusion coefficient of the

active species in the parent phase. On the other hand, in the

case of interface-limited growth, the rate is independent of

R1 and one obtains, dy
dt /

ffiffiffi
y
p

r (see also the Appendix). For

diffusion-limited growth, Eq. 19 eventually becomes

dr2

dy
¼ A S ~k1

S

G
� 1

� �
þ 1

� �
� B

dG

dy
r; ð20Þ

where A ¼ �k2

pN0D, B = 2k3 and the functions S(y), G(y) are

given by Eqs. 12, 14. Once Eq. 20 has been solved for

rðyÞ, the y(t) function can be estimated through integration

of the growth rate according to

s ¼
Z

dy

rðyÞ; ð21Þ

where s ¼ 2pN0Dt is the dimensionless time. The time

dependence of the volume of the a phase, grown on a

single particle, is eventually obtained through Eq. 14 and

the yðsÞ function Eq. 21. It goes without saying that under

steady-state conditions, Eq. 20 is identically nil, r is con-

stant and the reaction rate is just given by the time deriv-

ative of Eq. 14 (or Eq. 17). This computation, however,

requires the knowledge of the y(t) function. In turn, this

function can be determined either through modelling or

from experimental data.

We are now in a position for determining the scaling

properties of the parameters A, B and ~k1 in Eq. 20. To this

end, let us consider the reaction of Np spherical particles,

equal in size, with the liquid parent phase at constant

temperature. Accordingly, the volume of solution that

pertains to a single particle is, on average, t0 ffi X
Np
¼

Xqp4pR3

3m where X is the volume of the solution, Np the

number of particles, m the total mass of the particles and qp

the density of the p phase. As discussed in the last section,

in the nucleation stage, the total number of nuclei can be

considered to depend only on the initial mass of the p
phase. Consequently, one gets m

qp4pR3=3
4pR2N0 ¼ const:

that is N0 ¼ wR, w being a constant. For the coefficients A,

B and ~k1 entering Eq. 20, one obtains the following scaling

relationships with particle radius:

A ¼ 3mk2

capwDqpX
1

R2
ð22aÞ

B ¼ 6m

Xw1=2qp

1

R3=2
ð22bÞ

~k1 ¼
k1

k2

w1=2R1=2; ð22cÞ

where the total volume of the precipitate is given by

VTðsÞ ¼ NpVðsÞ ¼ 3m

qpw1=2

1

R3=2
GðyðsÞÞ: ð22dÞ

It is worth pointing out that the function GðsÞ also depends

on R via N0. Furthermore, as reported in the Appendix,

Eq. 20 can be solved in closed form provided that the

supersaturation does not change, substantially, during the

reaction. The integration of Eq. 20 is performed by con-

sidering the initial value of the supersaturation, r0, differ-

ent from zero. The reason for this is that nucleation has

been assumed to be simultaneous, i.e., at the beginning of

the phase transformation, the nucleation process is already

completed. Since nucleation and growth require a super-

saturation value different from zero, we set r 6¼ 0 at t = 0.

The kinetics of the transformed volume, for both dif-

fusion- and interface-limited growths of isotropic nuclei, is

shown in Fig. 3 (see also the Appendix). In particular, the

kinetics of the total volume and supersaturation is dis-

played in Fig. 3a and c for several values of the particle

radius at r0 ¼ 0:1. The dimensionless time has been

properly re-scaled to the particle radius, owing to the

dependence of N0 on R. In this plot, the quantities reported

in the abscissa and in the ordinate are proportional to the

running time and to the volume of the new phase,

respectively. The solution of the rate equations (Fig. 3)

gives account, qualitatively, of the two kinetic regimes,

experimentally observed in the dissolution-precipitation

reaction, and characterized by high rate and low rate. The

induction time of the dissolution-precipitation reaction is

found to be longer for the interface-limited growth mech-

anism. It should be borne in mind that since these solutions

are expressed in terms of dimensionless variables, they are

‘‘universal’’ in the sense that they only depend on growth

mode and nucleus shape. The transition to the low-rate

regime of the kinetics is ascribed to the slow down of the

dissolution process once the fractional surface coverage, S,

approaches unity. In fact, this explanation is consistent

with the behaviour of the SðsÞ kinetics also shown in

Fig. 3b and d. The behaviour of the supersaturation curve,

as well as the presence of a maximum, depends on

parameter values and growth mechanism. Furthermore, at

given values of A, B and A0, no appreciable change in the

reaction kinetics is obtained for ~k1\0:01, which is there-

fore representative of the lowest value of the reaction rate,

once the particle surface has been entirely covered by the

precipitate.

It is worth emphasizing that the precipitation reaction

proceeds until the supersaturation becomes nil, since the
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time derivative of the volume of the new phase is pro-

portional to the supersaturation r. In turn, this time

derivative enters the last term of the rate equation Eq. 20.

Application of the model to the formation of CSH layer

during C3S hydration: analysis of the experimental

kinetics

The reaction of formation of Calcium Silicate Hydrate

(CSH) on anhydrous grains, during Ca3SiO5 (C3S) hydra-

tion, is important in Materials Science and Engineer-

ing for C3S and is the main constituent of Portland cement,

and the hardening of the material is found to be gov-

erned by the hydration process. Specifically, the dis-

solution and the precipitation reactions are according to

Ca3SiO5 þ 3H2O ! 3Ca2þ þ 4OH� þ H2SiO2�
4 and

xCa2þ þ 2ðx� 1ÞOH� þ H2SiO2�
4 ! CaOx � SiO2 � H2 O,

respectively, where x is the CaO/SiO2 ratio. Recently, the

kinetics of this reaction, together with the effect of nano-

particles of foreign solid phase on the hydration process, has

been studied in Refs. [24, 25, 30]. As far as the description of

the kinetics is concerned, it is usually done by using either the

standard KJMA model or, as recently discussed in Ref. [24],

Cahn’s theory of grain boundary nucleated reactions. In the

following, we employ the model presented in Sect. 2.1 for

describing the kinetics of growth of CSH at the surface of

C3S particles, where the nucleation process has been shown

to be nearly simultaneous [30]. With reference to the notation

employed in Sect. 2.1.3, a and p phases are here identified

with the CSH and C3S phases, respectively.

Fig. 3 Solution of the kinetics for isotropic and both diffusion (a, b)

and interface (c, d)-limited growths of the nuclei (Eqs. 25–26) at

r0 ¼ 0:1. The kinetics refers to the reaction on particles of diameters

7, 10 and 14 lm. The behaviour of the supersaturation and fraction of

particle surface covered by the precipitate are shown in (a, c) and (b,

d), respectively (right scale). Dashed lines: particle diameter 7 lm;

long dashed lines: particle diameter 10 lm; dashed-dotted lines:

particle diameter 14 lm. Parameter values for 2R = 7 lm are

A ¼ A0 ¼ 10�2; b ¼ 0:1; ~k1 ¼ 0:01. Values of A, A0, B and ~k1

at the various R satisfy the scaling relationships Eqs. 22, 27

810 J Mater Sci (2012) 47:804–814

123



The hydration has been carried out on samples of C3S

particles with different values of the mean diameters and at

constant value of the lime concentration. In fact, main-

taining constant the concentration of lime avoids any

dependence of the growth rate with the Ca(OH)2 concen-

tration. Different brackets of Ca3SiO5, equal in mass, have

been hydrated in a thermoregulated cell at constant vol-

ume. It was shown that in the nucleation stage, the total

number of nuclei can be considered to depend only on the

mass of C3S and lime concentration, and the dissolution-

precipitation reaction occurs under steady-state conditions

[30]. Under these circumstances, the quantity of CSH

precipitated can be computed by exploiting the mass bal-

ance of Ca2?. In fact, in order to maintain the lime con-

centration constant, at steady-state, (3 - x) mol of Ca2?

have to be removed from the solution per each mole of

CSH precipitated. Therefore, by measuring the quantity of

Ca2? ions taken from the solution, it is possible to estimate

the quantity of CSH precipitated. As far as the modelling is

concerned, the volume of CSH can be estimated through

Eqs. 14, 17 provided that both nucleation density and

microscopic growth law are known (i.e. the y(t) function).

The trends of the G(y), ~GðyÞ and S(y) functions, dis-

played in Fig. 2, indicate that the onset of the low-rate

region can be located at a value of the y variable that is

around yTR ffi 3. This argument is at the basis of an analysis

of the kinetic data, which makes it possible to estimate the

nucleation density. In fact, the quantity of material pre-

cipitated at the transition point, QTR, can be linked to the

nucleation density through Eqs. 14, 17 (depending on the

growth mode). Taking into account the total number of

particles, one obtains

QTR ¼ qCSH

M0

N
3=2
0

NpGðyTRÞ

¼ qCSH

qC3S

3m

R

1

N
1=2
0

GðyTRÞ isotropic growthð Þ ð23aÞ

QTR ¼ qCSH

aM0

N
3=2
0

Np
~GðyTRÞ

¼ qCSH

qC3S

3m

R

a

N
1=2
0

~GðyTRÞ anisotropic growthð Þ; ð23bÞ

where QTR/mol, qCSH/mol cm-3, qC3S/g cm-3 and N0/cm-2.

The nucleation densities, computed through Eqs. 23 by

using the experimental values of QTR, have been displayed in

Fig. 4 for isotropic and anisotropic growths, respectively. In

particular, in the present calculation, the numerical values

m = 4 g, a ¼ 3, qCSH ¼ 2:116 g cm�3, qC3S ¼ 3:14 g cm�3

and x ¼ Ca/Si ¼ 1:8 were employed. In the early stage of the

reaction, the quantity of nucleated CSH is expected to

depend on the C3S quantity and lime concentration only, and

the ratio N0

R should be independent of R. The behaviour of the

re-scaled nucleation density has been displayed in Fig. 4.

From this figure, it turns out that, assuming an isotropic

nucleus growth, the nucleation density is about an order of

magnitude lower than that attained in the case of anisotropic

growth. In fact, a morphological study of the deposit via

AFM corroborates this growth mechanism. Significantly, the

values of the nucleation density computed in Fig. 4 for the

anisotropic growth are in agreement with those employed in

the numerical simulation discussed in Ref. [30]. In this

computer simulation, the mole fraction of nuclei (for

instance at 2R = 7 lm) was 4 9 10-5, which implies,

assuming a density of surface sites of the order of magnitude

of q0 ffi ðqC3SÞ2=3
, an N0 ffi 1010 cm�2. Therefore, the pres-

ent data analysis, based on an analytical approach, is con-

sistent with the kinetic results previously achieved on the

growth mode of the deposit.

Once the nucleation density has been estimated,

Eqs. 14, 17 can be employed for determining, from the

experimental kinetics, the microscopic growth law of the

nuclei. To this purpose, the experimental kinetics Q(t)

(reproduced in Fig. 5a) has been fitted with a guess func-

tion that meets the following requirements: (i) it can easily

be inverted with respect to the time variable, t; (ii) it

reproduces both the high-rate and low-rate regions of the

experimental kinetics. The low-rate region is nearly linear

with time, while the high-rate region is found to be well

described by a stretched exponential curve. Furthermore,

step functions can suitably be employed for modelling

the transition between these two reaction regimes. The

function QðtÞ ¼ x½1� expð�ctpÞ�Hðt
 � tÞ þ ½qðt � t
Þ þ
Qðt
Þ� Hðt � t
Þ has therefore been used (HðxÞ being the

Fig. 4 Behaviour of the re-scaled nucleation density (N0/R) as a

function of particle diameter for both anisotropic (with a = 3) and

isotropic growths (left scale). The computation is performed through

Eq. 23 by using the quantities of CSH precipitated at the transition

point, QTR (right scale). The error bar of N0/R was estimated from the

uncertainties on QTR and particle radius. Specifically, DQTR=QTR 	
0:05 and DR=R 	 0:1 were employed
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Heavyside function), where x, c and p are fitting param-

eters and q is the slope of the linear part of the low-rate

region of the kinetics. The cut-off time, t*, has been chosen

in such a way as to ensure the continuity of the derivative.

The fits are shown in Fig. 5a as dashed lines and provide us

with a description of the kinetics through an analytical

function. By inverting this function and inserting either the

QthðyÞ ¼ QTR

GðyTRÞGðyÞ (isotropic growth) or the QthðyÞ ¼
QTR

~GðyTRÞ
~GðyÞ (anisotropic growth) curves, one gets

tðyÞ ¼ � 1

c
ln 1� QthðyÞ

x

� �� �1=p

HðQðt
Þ � QthðyÞÞ

þ QthðyÞ � Qðt
Þ
q

þ t

� �

HðQthðyÞ � Qðt
ÞÞ;

that is the y ¼ yðtÞ function. The growth laws, ‘==ðtÞ ¼
yðtÞ
pN0

 �1=2
and R1ðtÞ ¼ yðtÞ

pN0

 �1=2
, are eventually computed for

anisotropic and isotropic growths, respectively. It is worth

pointing out that it is at the level of the determination of the

y = y(t) function, and therefore of the microscopic growth

law, that the kinetic model developed in Sect. 2.1.2 comes

into play in this analysis with the G(y) ( ~GðyÞ) function. In

addition, the microscopic growth law is for the extended

size of the nucleus (R1, ‘==) as discussed in Ref. [21, 22].

The results have been shown in Fig. 5b–c for three values of

the mean diameter of the particles and for the two nucleus

shapes although, as discussed above, the anisotropic case is

more appropriate. The uncertainties dR1=R1 and d‘===‘==
have been considered of the order of magnitude of dN0=N0

which, in turn, depends on both dQTR=QTR and dR=R through

Eqs. 23. This kinetics is found to be almost linear with time,

at least in the high-rate region. Such a behaviour seems to be

compatible with an interface-limited growth under constant

value of supersaturation, since this growth mechanism

entails _‘== 	 r. Besides, a nearly constant supersaturation

indicates that this stage of the growth proceeds under quasi-

steady-state conditions, i.e., the dissolution and precipitation

reactions occur at the same rate.

The experimental kinetics indicates that the dissolution-

precipitation reaction also proceeds after the duration of the

experiment, namely & 1200/min, although this rate is

about one order of magnitude lower than that of the high-

rate region. On the other hand, the rate of growth of the

nuclei, as extracted from the data by means of the kinetic

model (Fig. 5b–c), is found to be different from zero at the

maximum time of the kinetic curve. The quantity of

material precipitated on a single particle at the maximum

time can be computed from the growth law of Fig 5b

according to: a‘==4pR2qCSH and the fraction of C3S con-

verted to CSH can be computed as: 3a‘==qCSH=RqC3S. For

instance, on a 14-lm-diameter particle, the percentage of

precipitated material is (20 ± 5)%, at a = 3, which

favourably compares with a value of 20% as computed

from the experimental curve of Fig. 5a; on a 10-lm-

diameter particles, this value is (24 ± 6)% to be compared

with a value of 30% attained from Fig. 5a. In these eval-

uations, the rate of dissolution is assumed to be equal to the

rate of precipitation. The uncertainties of these estimates

Fig. 5 a Experimental data on the kinetics of CSH formation

(reproduced from Ref. [30]). The dashed line is the best fit of the

guess function reported in Sect. 2.2 to the data. b and c show the

behaviour of the microscopic growth law by assuming anisotropic and

isotropic growth modes, respectively (dashed lines). The behaviour of

the fraction of the particle surface covered by the precipitate is also

shown (right scale, solid lines). The typical error bar is also

displayed. From the top of the figures b and c, the S(t) curves refer to

14, 10, and 7lm particle diameters
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are linked to those of particle radius and nucleus size, ‘==,

as discussed.

Before concluding this section, a comment is in order on

the effect of the particle shrinkage caused by the dissolu-

tion process in the early stage of the reaction. Since the rate

of dissolution is nearly equal to the rate of precipitation, the

relation holds

RðtÞ ffi Rð0Þ 1�
3ðPMÞC3S

4pqC3SNpRð0Þ3
QðtÞ

" #1=3

¼ Rð0Þ 1�
ðPMÞC3S

m
QðtÞ

� �1=3

; ð24Þ

where ðPMÞC3S is the molecular weight. According to

Sect. 2.1, an estimate of the nucleation density at the

transition point is given by N0ðR0Þ=N0ðRTRÞ ¼

1� ðPMÞC3S

m QTR

h i2=3

. This ratio is found to be 0.8, 0.82 and

0.92 for 2R0 = 7, 10 and 14 lm, respectively.

Conclusions

In this contribution, it has been shown that the kinetic

theory of phase transition with position-dependent nucle-

ation rate can successfully be applied for describing com-

plex transformations, occurring in multicomponent

systems, such as the dissolution-precipitation reaction. The

reaction kinetics exhibits two regimes characterized by

high and low rates. The onset of the second regime is ruled

by the kinetics of the surface coverage of the particle. The

model is developed for both progressive and simultaneous

nucleation. In the last case, the solution is obtained in

closed form for any growth law and in terms of dimen-

sionless variables. The model is employed for analysing

experimental data on the formation of CSH at C3S parti-

cles, in order to get information on both nucleation density

and growth law. By using the quantity of CSH precipitated

up to the transition point between the high- and the low-

rate regions, the nucleation density has been estimated

to be in the range 109–1011 cm-2, depending on the par-

ticle radius. As far as the microscopic growth law is

concerned, it was derived from the experimental kinetics

and it is consistent with the interface-limited growth

mechanism.

Appendix

By setting in Eq. 20 z ¼ r2 and expanding the function
ffiffi
z
p

,

in the last term of the right member, up to the second order

around z0 ¼ r2
0, one ends up with the equation (G0 ¼ dG

dy
)

dz

dy
þ z

b
r0

G0ðyÞ ¼ f ðyÞ ð25Þ

with solution

zðyÞ ¼ e
�bGðyÞ

r0 r2
0 þ

Zy

0

f ðxÞe
bGðxÞ

r0 dx

0
@

1
A; ð26Þ

where b ¼ 3
4
B, r0 is the initial supersaturation and

f ðyÞ ¼ A SðyÞ ~k1
SðyÞ
GðyÞ � 1

	 

þ 1

n o
� br0

2
G0ðyÞ. In Eq. 25,

the terms of the order of z2 have been neglected. As

anticipated above, using Eq. 26 in Eq. 21, one estimates

yðsÞ and, with it, the time dependence of the volume of the

Fig. 6 Kinetics of transformation in the case of interface-limited

growth of anisotropic nuclei (left scale). The initial supersaturation

and the aspect ratio are equal to r0 = 0.1 and a = 3, respectively.

Values of B and ~k1 as in Fig. 3. The quantity A0 scales as A0ð2RÞ 	
R�3=2 where A0ð7 lmÞ ¼ 0:3. The supersaturation and the fractional

surface coverage of the particles are shown as dashed lines in a and b,

respectively (right scale). The maximum of the supersaturation

decreases with particle radius, and the changing rate of the fractional

surface coverage increases with particle radius
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new phase. In turn, in Fig. 3, the behaviour of the super-

saturation is consistent with the series expansion above,

since r2 � 1. The reaction kinetics exhibits a transition

from high-rate to low-rate regimes, which is ruled by the

surface coverage of the particle (Fig. 3).

In the case of interface-limited growth of isotropic

nuclei, the growth rate is proportional to the supersatura-

tion ( _R1 ¼ br) and dy
dt ¼ 2br

ffiffiffiffiffiffiffiffiffiffi
pN0y
p

where b is a constant.

Eq. 20 becomes

dr2

dy
¼ A0ffiffiffi

y
p S ~k1

S

G
� 1

� �
þ 1

� �
� Br

dG

dy
; ð27Þ

where A0 ¼ �k2

b
ffiffiffiffiffiffi
pN0

p ¼ 3k2m
bDc

ffiffiffiffiffi
pw
p

qC3SXR3=2, to be compared with

Eq. 22a. Therefore, provided that the series expansion offfiffi
z
p

holds in this case as well, the approximate solution of

Eq. 27 is still given by Eq. 26 with A replaced by A0ffiffi
y
p . The

dimensionless time is now given by s0 ¼
R

dyffiffiffiffiffiffiffi
yzðyÞ
p (see also

Eq. 21) where s0 ¼ 2b
ffiffiffiffiffiffiffiffi
pN0

p
t.

By using in Eq. 27, the function a ~GðyÞ instead of G(y),

this equation can also be employed for modelling the

anisotropic nucleus growth. Solutions of Eq. 27, in the case

of interface-limited growth of anisotropic nuclei, are dis-

played in Fig. 6a–b. Even in this case, the kinetics exhibits

the presence of high- and low-rate regions and of an

induction time.
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